Greater osteoblast proliferation on anodized nanotubular titanium upon electrical stimulation
نویسندگان
چکیده
Currently used orthopedic implants composed of titanium have a limited functional lifetime of only 10-15 years. One of the reasons for this persistent problem is the poor prolonged ability of titanium to remain bonded to juxtaposed bone. It has been proposed to modify titanium through anodization to create a novel nanotubular topography in order to improve cytocompatibility properties necessary for the prolonged attachment of orthopedic implants to surrounding bone. Additionally, electrical stimulation has been used in orthopedics to heal bone non-unions and fractures in anatomically difficult to operate sites (such as the spine). In this study, these two approaches were combined as the efficacy of electrical stimulation to promote osteoblast (bone forming cell) density on anodized titanium was investigated. To do this, osteoblast proliferation experiments lasting up to 5 days were conducted as cells were stimulated with constant bipolar pulses at a frequency of 20 Hz and a pulse duration of 0.4 ms each day for 1 hour. The stimulation voltages were 1 V, 5 V, 10 V, and 15 V. Results showed for the first time that under electrical stimulation, osteoblast proliferation on anodized titanium was enhanced at lower voltages compared to what was observed on conventional (nonanodized) titanium. In addition, compared to nonstimulated conventional titanium, osteoblast proliferation was enhanced 72% after 5 days of culture on anodized nanotubular titanium at 15 V of electrical stimulation. Thus, results of this study suggest that coupling the positive influences of electrical stimulation and nanotubular features on anodized titanium may improve osteoblast responses necessary for enhanced orthopedic implant efficacy.
منابع مشابه
Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces
Current orthopedic implants have functional lifetimes of only 10-15 years due to a variety of reasons including infection, extensive inflammation, and overall poor osseointegration (or a lack of prolonged bonding of the implant to juxtaposed bone). To improve properties of titanium for orthopedic applications, this study anodized and subsequently coated titanium with drugs known to reduce infec...
متن کاملReduced adhesion of macrophages on anodized titanium with select nanotube surface features
One of the important prerequisites for a successful orthopedic implant apart from being osteoconductive is the elicitation of a favorable immune response that does not lead to the rejection of the implant by the host tissue. Anodization is one of the simplest surface modification processes used to create nanotextured and nanotubular features on metal oxides which has been shown to improve bone ...
متن کاملAnodized 20 nm diameter nanotubular titanium for improved bladder stent applications
Materials currently used for bladder applications often suffer from incomplete coverage by urothelial cells (cells that line the interior of the bladder and ureter) which leads to the continuous exposure of the underlying materials aggravating an immune response. In particular, a ureteral (or sometimes called an ureteric or bladder) stent is a thin tube inserted into the ureter to prevent or tr...
متن کاملTitanium dioxide nanotube arrays: A novel approach into periodontal tissue regeneration on the surface of titanium implants
Titanium alloys have been extensively used as promising implant materials. The anodic oxide layer on the surface of this alloy can be a compact, porous or a tubular structure, which has a direct impact on the final characteristics of the implants. In this study, nano topographic oxide arrays were synthesized on the surface of titanium substrates using an anodic oxidation technique. The anodizat...
متن کاملCellular responses on anodized titanium discs after laser irradiation.
BACKGROUND AND OBJECTIVES Although the laser is one of the widely used systems in dental field, literature about the biological effects of laser irradiation on the titanium surface is rare. The aim of this study was to investigate the responses of osteoblast-like cells seeded onto laser irradiated anodized titanium discs, using a CO(2) (carbon dioxide) and Er,Cr:YSGG (erbium chromium-doped yttr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal of Nanomedicine
دوره 3 شماره
صفحات -
تاریخ انتشار 2008